A pan balance has a container of water with an overflow spout on the right-hand pan as shown. It is full of water right up to the overflow spout. A container on the left-hand pan is positioned to catch any water that overflows. The entire apparatus is adjusted so that it’s balanced. A brass weight on the end of a string is then lowered into the water, but not allowed to rest on the bottom of the container. What happens next ?
Water overflows and the right side of the balance tips down.
Water overflows and the left side of the balance tips down.
Water overflows but the balance remains balanced.
Water overflows but which side of the balance tips down depends on whether the brass weight is partly or completely submerged.
A thin vertical uniform wooden rod is pivoted at the top and immersed in water as shown. The container is slowly raised. At a certain moment, the equilibrium becomes unstable. If density of water is $9/5$ times the density of wood, then ratio of total length of rod to the submerged length of rod, at that moment is
Karman line is a theoretical construct that separates the earth's atmosphere from outer space. It is defined to be the height at which the lift on an aircraft flying at the speed of a polar satellite $(8 \,km / s )$ is equal to its weight. Taking a fighter aircraft of wing area $30 \,m ^2$, and mass $7500 \,kg$, the height of the Karman line above the ground will be in the range .............. $km$ (assume the density of air at height $h$ above ground to be $\rho( h )=1.2 e ^{\frac{ h }{10}} \,kg / m ^3$ where $h$ is in $km$ and the lift force to be $\frac{1}{2} \rho v^2 A$, where $v$ is the speed of the aircraft and $A$ its wing area).
Water coming out of a horizontal tube at a speed ? strikes normally a vertically wall close to the mouth of the tube and falls down vertically after impact. When the speed of water is increased to $2v$ .
A cubical block of wood $10 \,cm$ on a side floats at the interface between oil and water with its lower surface horizontal and $4\, cm$ below the interface. The density of oil is $0.6gc{m^{ - 3}}$. The mass of block is ...... $gm$
A container of liquid is free fall without flyout of liquid is this container obey the principle of Archimedes ?